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Abstract

Open shortest path first (OSPF) is the most widely used internal gateway routing protocol on the Internet. However,

one shortcoming is that it does not take advantage of the existence of multiple equal-cost paths between source and

destination nodes. A well-known variation of OSPF, OSPF-ECMP (ECMP, equal-cost multipath), does exploit the

presence of multiple equal-cost paths, but only on a static basis. A variation of OSPF, OSPF-OMP (OMP, optimized

multipath), attempts to dynamically determine the optimal allocation of traffic among multiple equal-cost paths based

on the exchange of special traffic-load control messages. This paper briefly describes the OSPF-OMP algorithm and the

design of a discrete event simulator that models its behavior. We then use this simulator to carry out three experiments

that compare the performance of OSPF, OSPF-ECMP, and OSPF-OMP under a range of traffic loads and distribu-

tions. Our results show that OSPF-OMP produces improvements in both delivery time and the number of lost messages

when compared with the other two protocols. � 2002 Published by Elsevier Science B.V.

1. Introduction

Open shortest path first (OSPF) is a link-state
routing protocol developed by the Internet Engi-
neering Task Force (IETF), and it is the internal
gateway protocol currently recommended by the
Internet Advisory Board [1,2]. Like any link-state
protocol, it may identify a number of distinct
equal-cost paths between source/destination pairs.
However, unless the protocol has been explicitly
configured to take advantage of these multiple

paths, it arbitrarily chooses one route and uses it in
all forwarding operations.
One of the earliest attempts at exploiting equal-

cost routes was the OSPF variant called OSPF-
ECMP, an acronym for equal-cost multipath [3].
ECMP divides the total volume of traffic across all
equal-cost paths using fixed, unchanging measures
such as line speed or hop count. Referring to the
sample four-node network in Fig. 1, if our distance
metric is hop count, then there are two equal-cost
paths from A to D––ABD with cost 2 and ACD,
also with cost 2. OSPF would arbitrarily choose
one of these two paths and use it for all traffic
arriving at A destined for D. On the other hand,
ECMP would split traffic equally between these
two routes. This splitting process could be done
using round-robin forwarding, in which messages
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1; 3; 5; . . . go one way, while 2; 4; 6; . . . go the other,
or via hashing in which the source and destination
host identifiers are hashed to produce a numerical
value that determines the specific route taken.
However, since ECMP does not dynamically

adjust its division of traffic based on a knowledge
of current loads, its allocation may be sub-opti-
mal. For example, referring again to Fig. 1, as-
sume that all links have capacity 1, the traffic
volume from A to D is 1.2 units, from B to D, 0.5
units, and from C to D, 0.2 units. Using OSPF, all
A to D traffic travels via a single route. If that
chosen route is ABD, then the BD link is utilized
170% (1:2þ 0:5 units of traffic, with a link capacity
of 1 unit) while the CD link is utilized only 20%. If
OSPF instead chooses the ACD path, then the BD
and CD links will be used 50% and 140% respec-
tively. In both cases links are overloaded, and the
system is unstable. With OSPF-ECMP, traffic
from A to D is divided evenly between the two
equal-cost routes. This produces utilizations along
the BD and CD lines of 110% and 80% respec-
tively––more closely balanced, but still unstable.
An optimal split, based on given loads, would al-
locate 35% of the A to D traffic to path ABD and
65% to ACD, resulting in a utilization of 85% on
both BD and CD––a stable system. Unfortunately,
since ECMP does not dynamically examine load-
ing values, it is unable to determine this optimal
split.
There have been previous attempts to create

adaptive routing algorithms that respond to
changing traffic loads and patterns. Unfortunately,
they have generally met with limited success due to
oscillation and protocol overhead [4]. Referring
once more to Fig. 1, if ABD were the optimal
route from A to D, then a dynamic protocol would
shift most traffic to it, causing increased delays and

longer queues along that route. This will eventu-
ally cause ACD to become the better route, which
will cause longer delays and queues along it,
causing us to switch back again to ABD, etc.
Dynamic algorithms are extremely sensitive to the
‘‘granularity’’ of change. That is, if the protocol
discovers a better route but switches too much
traffic too quickly, that route becomes overloaded
and sub-optimal, quickly leading to oscillation
and instability. On the other hand, if too little
traffic is switched, then we are not exploiting the
adaptive nature of the protocol and will not gain
much when compared to traditional static algo-
rithms.
A second major problem with dynamic routing

methods is overhead. If we update too often then
nodes will always have current loading informa-
tion but at the cost of excessive network overhead.
If updates are infrequent, then the loading infor-
mation is out-of-date, and decisions about how to
distribute traffic may be quite poor.
OSPF-OMP, an acronym for ‘‘optimized mul-

tipath’’ is the most recent attempt to create a load-
sensitive routing algorithm. It was proposed by
Curtis Villamizar of UUNET Corp. in October,
1997 and initially presented to the IETF in March
1998 [5]. Modifications to the original proposal
were made in both 1998 and 1999, and the most
recent IETF draft is entitled draft-ietf-ospf-omp-
03, dated August 18, 1999, and available on the
Web at http://www.brookfield.ans.net/ospf-omp/.
For additional information about any aspect of
OSPF-OMP, check the OMP home page at http://
www.brookfield.ans.net/omp/.
This paper gives an overview of the OSPF-

OMP protocol and then describes a discrete event
simulation model created by the authors to ana-
lyze the performance of the entire OSPF family of
routing algorithms. It then presents the results of
experiments conducted with this model to study
the performance of OSPF, OSPF-ECMP, and
OSPF-OMP under both normal and highly stres-
sed traffic loads. Our observations are compared
with the results of earlier simulation experiments
on OSPF conducted by the IETF. Our results
demonstrate the important performance improve-
ments that can potentially be achieved using the
OSPF-OMP adaptive routing protocol.

Fig. 1. Sample four-node network.
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2. The OSPF-OMP routing algorithm

OSPF-OMP belongs to the general category of
routing methods called link-state routing algo-
rithms in which every node has a complete copy of
the network map that is updated on a regular
basis. Using this map each node executes a short-
est-path first algorithm to determine the optimal
routes. (For more information about the family of
link-state routing methods, refer to [6,10].)
The three fundamental stages of the OSPF-

OMP adaptive routing protocol are

• flooding of loading information,
• load adjustment,
• message forwarding.

We individually discuss each of these operations
in the following three sections.

2.1. Flooding of loading information

Every network router samples its own SNMP
counters at 15 s intervals and collects the following
statistics about each link: (1) the fraction of link
capacity used, called the observed load, (2) the
number of incoming and outgoing packets drop-
ped, and (3) the line speed in kilobytes/s. The ob-
served load values are converted to a quantity
called equivalent load, which is an estimate of what
the loading would be if packets were not lost due
to memory constraints and TCP window size re-
strictions. On lightly used lines the observed load
and equivalent load will be virtually identical since
packets are rarely lost. On heavily loaded lines,
however, the equivalent load may be over 100%
indicating that the total traffic exceeded a line’s
capacity. Thus, a link with an observed load of
0.98 (98%) may have an equivalent load of 1.20
(120%) when lost packets are factored in. The
equivalent load computation is an attempt by
OMP designers to obtain a more accurate metric
of which links are most heavily used and should
have some traffic offloaded onto other lines. (The
exact rules for the computation of equivalent load
are given in [7, pp. 6–7].)
Next, each node determines whether or not to

flood the loading information just collected to all

other nodes. As mentioned earlier, this is an
important decision as too frequent flooding adds
significantly to overhead while infrequent flood-
ing leaves nodes with out-of-date information.
This decision is based on three criteria: (1)
elapsed time since the last flooding message, (2)
the current values of equivalent load on all lines,
and (3) the change in equivalent loading values
since the last flooding message. Flooding can
occur as often as every 30 s if a line is heavily
loaded, and its load is changing rapidly. It can be
as infrequent as every 20 min if a line is lightly
loaded. The algorithm for determining whether or
not to flood link-loading information is specified
in [7, pp. 18–20]. If a node decides to send a
flooding message, then the equivalent load data
for all physically connected links is packed into a
special LSA_OMP_LINK_LOAD routing control
message and transmitted to every other router in
the area [8].

2.2. Load adjustment

Each node that does routing maintains a next-
hop structure. This is a list of all equal-cost paths
from itself to every possible destination. In addi-
tion, each node identifies the critical segment––the
one link in the network with the highest equivalent
load––and determines whether or not each path in
the next-hop structure does or does not include the
critical segment. Finally, each node determines the
highest equivalent load value along any single link
of each path and calls this the equivalent path load
for that path.
In Fig. 2, the same four-node network used

in Fig. 1, assume that node A has received the
equivalent load values shown in italics. These
values were obtained from nodes B, C, and D via

Fig. 2. Sample four-node network with equivalent loads.
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the flooding technique described in the previous
section.
Node A builds a next-hop structure containing

all equal-cost shortest paths for reaching node D
which, in this case, are ABD and ACD. The next-
hop table for A to D routing might look something
like the structure shown in Fig. 3.
The values P1 and P2 in Fig. 3 are the proba-

bility that a message at A destined for D would use
this specific path. If we were using OSPF-ECMP
both of these values would be initialized to 0.50
and would never change.
When a new LSA_OMP_LINK_LOAD rout-

ing control message arrives, it will trigger a load
adjustment, i.e., a change to the probability values
Pi, if (1) the message describes the equivalent load
on the current critical segment––i.e., link BD in
Fig. 2, (2) the message describes the traffic on a
link whose equivalent load value will now make it
the new critical segment, or (3) the difference in
equivalent path load between the most heavily
used path and the most lightly used path changes
significantly.
For example, assume a LSA_OMP_LINK_

LOAD message arrives at A from C saying that
the load on link CD is 0.50. Nothing has changed
so no traffic adjustments are made. Similarly, if the
message reported that the load on CD had drop-
ped to 0.40, no adjustments are made because the
equivalent path load on path ACD is still 0.50.
(The most heavily used link on this path is now
AC, which has an equivalent load of 0.50.)
However, assume that the LSA_OMP_LINK_

LOAD message reports the equivalent load on CD
has increased to 0.60. Now the equivalent path
load on ACD is 0.60, and criterion 3 above has
been met. The difference between the most and
least heavily used paths has changed from 0.35
(0.85–0.50) to 0.25 (0.85–0.60).
If the equivalent load on CD has grown to 0.90,

that will also trigger a traffic adjustment due to
criterion 2 above, since link CD becomes the criti-

cal segment. Finally, a LSA_OMP_LINK_LOAD
message containing information about BD will
trigger a traffic adjustment due to criterion 1, since
BD is the current critical segment.
When a node adjusts its forwarding probabili-

ties it decreases the probability value of all paths
that include the critical segment and increases the
probability value of all paths that do not contain
the critical segment. The size of the adjustment
varies; initially it is set to 1% but increases expo-
nentially each time an adjustment is made in the
same direction. This is done to help speed up the
move toward equilibrium. However, whenever
the direction of the increment is reversed, (i.e., the
critical segment changes) the adjustment size is cut
in half to reduce the likelihood that the algorithm
will develop oscillations. While the stability of this
algorithm has not been formally proven, initial
IETF simulation studies strongly indicate a trend
toward stable behavior [9,11].
A complete description of the OSPF-OMP

traffic adjustment algorithm is contained in [7, pp.
11–12].

2.3. Message forwarding

Fig. 3 appears to imply that the information
needed to divide traffic between equal-cost routes
is represented as probabilities. While these values
are probabilities, they are not actually stored in
the ‘‘traditional’’ way––i.e., values in the range
[0.0,1.0]. Instead, they are stored as hashing
boundaries.
Nodes make routing decisions by hashing on

source and destination IP addresses located in the
packet header and using the result to determine
how to forward the message. The OSPF-OMP
hashing function produces a 16-bit unsigned value
in the range [0,65535]. By dividing this range in a
manner that reflects the probability of selecting
each route, the output of the hash function can be
directly related to the identity of the node where
the message should be forwarded. In addition, the
use of a 16-bit hash value allows for very fine ad-
justments to the traffic distribution.
For example, if two equal-cost routes, R1 and

R2, were to be used equally, then we would simply
set the hashing boundary to 65; 536� 2 ¼ 32; 768.

Fig. 3. Next-hop data structure for node A of Fig. 2.
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For a given (src, dst) pair within message M, if
Hðsrc; dstÞ < 32; 768 then message M will take
route R1, otherwise it will go via R2.
All paths in the next-hop table that have the

same next node are folded together into a single
entry in the routing table and assigned a single
hashing boundary value. It is these hashing bound-
aries, not probabilities, that are used in making
forwarding decisions. For example, assume the
four-node network shown in Fig. 1 but with a
bi-directional link between nodes B and C. Now,
there are four paths from A to D and assume that
the probability of using each of those routes is as
follows:

Since the first two paths both forward messages to
node D via node B, we can fold these two paths
together in the routing table and say that there is a
35% chance of forwarding a message to node B. (It
is B that will ultimately decide whether to choose
path ABD or ABCD.) Similarly, the next two
paths can also be folded together, producing a 65%
chance of forwarding a message to node C. The
simplified routing table now looks like the fol-
lowing:

When A receives a packet destined for D, it
first evaluates the function val ¼ Hðsrc; dstÞ. If
val < 22; 938 the message is sent to node B; oth-
erwise it is forwarded to node C.
We can now see how load adjustments fit quite

naturally within this model. For example, based
on newly arrived loading information, we may
wish to decrease traffic along all paths that include

the critical segment BD, and increase traffic along
the segments that do not include the segment BD.
This might produce something like the following
set of modified probabilities:

To reflect these new probabilities, we only need
to adjust the hashing boundaries that are stored in
the routing table:

This has been only a brief description of the
highly complex OSPF-OMP dynamic routing
protocol. There are a large number of user-
configurable options and parameters that allow a
network manager to customize the specific be-
havior of the protocol. For a complete description
of the OSPF-OMP dynamic routing protocol, the
interested reader is referred to [7,9].

3. The simulator

The authors designed and built a packet-based,
discrete event simulator capable of modeling the
behavior of autonomous systems running either
‘‘pure’’ OSPF or one of the two variants described
in Section 2: OSPF-ECMP and OSPF-OMP. A
configuration preprocessor allows users to describe
the exact network they want to simulate, including
the number of nodes, processing speed, the speed

Path Probability
A! B! D 0.3
A! B! C! D 0.05
A! C! D 0.5
A! C! B! D 0.15

Desti-
nation

Next
node

Hashing boundary

D B 22,938(¼ 0:35� 65,536)
C 65,536

Path Probability
A! B! D 0.295
A! B! C! D 0.051 (probability of

sending to B ¼ 0:346,
previously 0.35)

A! C! D 0.506
A! C! B! D 0.148 (probability of

forwarding to
C ¼ 0:654, previously
0.65)

Destina-
tion

Next
node

Hashing boundary

D B 22,675(¼ 0:346� 65; 536,
previously 22,938)

C 65,536
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and location of communication links, the amount
of memory, the arrival rate, size and destination of
packets, and the particular OSPF routing variant
to be used.

3.1. The two-stage queueing model

Each node in the network is modeled as a two-
stage queueing system as shown in Fig. 4. The first
stage is the processing stage, which accepts pack-
ets, determines if they have arrived at their desti-
nation and, if not, moves them on to the second
stage. The second stage is the transmission stage,
and it models packet transmission from one node
to another. Following transmission, the packet will
be located at stage one of the next node. Thus, the
life of a packet is modeled as a series of processing/
transmission operations at each node on the path
from source to destination.
Newly generated packets, as well as in-transit

packets arriving from other nodes, are either stored
in the stage 1 processor queue or, if the processor is
idle, sent directly to the processor. There are two
packet types in the model––data packets, which are
characterized by their source, destination, and
length, and control packets, characterized by their
type. Currently, the only control message included
in the simulator is the LSA_OMP_LINK_LOAD
flooding message used by OSPF-OMP.
Processor queues have a finite capacity (set by

the user), and if insufficient memory is available
when a packet arrives, it is discarded and a lost-
packet counter updated. Each node has a single
processor that handles all packets in a constant
amount of time. If a packet’s ultimate destination
is this node then the delivery time is recorded, and
the packet is removed from the system. If it is

destined for another node then a forwarding de-
cision is made using the selected routing protocol
and routing table, and the packet moves on to
stage 2.
In the transmission stage there is a transmitter

and queue for each outgoing line. The transmitter
may start sending the packet immediately or, if it
is busy, it puts the newly routed packet into the
transmission queue of the corresponding line. The
transmission time T of a packet is given by

T ¼ ðLþ S=BÞ
where L is latency in s, B is line speed in bits/s, and
S is the message size in bits. Transmission queues
also have finite capacity and, when full, packets
are again dropped and the lost-packet counter
updated. If a packet is successfully transmitted it
arrives at stage 1 of the next node on the path to its
final destination, and this process/transmit se-
quence is repeated.

3.2. Traffic generation parameters

New messages are generated by the simulator at
node i using an exponential interarrival time dis-
tribution with mean value ki, where ki is provided
by the user during network configuration. Each
node has its own local value of ki in order to
provide the greatest amount of flexibility. In ad-
dition, the simulator contains an event type called
change traffic parameters, which may be placed on
the calendar as often as desired and for any time.
When this event occurs, the simulator will input
new values of ki from the configuration file and
immediately begin using them.
The two other important traffic generation pa-

rameters are message size and message destination.
The size of a message at node i is an exponentially
distributed random variable with mean value ki.
As with the generation rate, this mean value pa-
rameter is input by the user during network con-
figuration and may be dynamically adjusted
during simulation via the change traffic parameters
event.
Finally, message destination is determined us-

ing a two-dimensional array called the destination
probability table (DPT). The value of DPT½i; j	 is
the probability that a message generated at node iFig. 4. Two-state queueing model of a network node.
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will be ultimately destined for node j. A random
variable r is generated according to this distribu-
tion and used to determine the destination. The
DPT table is provided by the user, and can also be
dynamically adjusted during simulation.

4. The experiments

We ran a series of simulation experiments using
the model in Section 3 to investigate the behavior
of OSPF, OSPF-ECMP, and OSPF-OMP under
a range of traffic intensities and distributions. All
experiments were run using the 13 node, 16-link
network shown in Fig. 5. This network roughly
corresponds to the structure of the NSF Internet
Backbone that existed in 1989 [10].
All communication links have the same speed,

which translates to equal cost for all segments. As
a result, of the possible 13� 12 ¼ 156 source–
destination pairs, 30 have multiple equal-cost
paths. This allowed us to test the ability of both
ECMP and OMP to exploit the existence of these
equal-cost routes.

4.1. Experiment #1: network performance under
varying traffic intensities

In this first experiment we varied the amount of
traffic in the network, and for each traffic level
simulated network behavior for a period of 1 h. In
all runs the number of new packets generated at
each node is identical, and each node sends pack-
ets to all other nodes with an equal probability.
We performed 20 experiments, with traffic rates at

each of the 13-nodes scaled so that the total mes-
sage generation rate for the entire network varied
from a low of 100 mess/s to a high of 2000 mess/s
in increments of 100. Each experiment was re-
peated five times, and the data reported in Table 1
is the average for these five repetitions. For each
run we measured (1) the percent of packets drop-
ped, and (2) the average end-to-end delivery time
for all packets that reached their destination. We
did this for the three variants of OSPF: best path
always (BPA), or ‘‘pure’’ OSPF, ECMP and OMP.
The results are displayed in Table 1, and they
clearly indicate that for our specific network con-
figuration OMP produced an improvement in
performance at all traffic levels.
For light traffic loads, 100–500 mess/s, all three

OSPF variants handle the total traffic without any
lost packets. However, in every case OMP pro-
duced lower average packet delivery times com-
pared to both BPA and ECMP. The improvements
ranged from 2% to 9%, with an average reduction
of 4.5%, compared to BPA, and from 1.5% to
8.6%, with an average of 4.2%, over ECMP. This
shows that even with relatively light loads, the
benefits of reducing queuing delays by making
better use of equal-cost paths can be significant.
At medium levels of network load, 600–800

mess/s, both BPA and ECMP begin to lose packets
due to queue overloads and memory limitations.
However, OMP has no lost packets due to its
ability to move traffic from heavily loaded lines to
more lightly used ones and thus make better use
of the total memory capacity of the network. At
medium traffic volumes packet loss rates with BPA
and ECMP are low––0.001–0.0055%––but that

Fig. 5. The 13-node network used in the simulation experiments.
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still represents a significant number of undeliv-
ered packets. For example, a packet loss rate of
0.00548% by BPA at 800 mess/s means that during
the 1 h of simulated network behavior about 158
packets will be lost due to limitations of the
routing protocol. In addition to not losing packets,
OMP is also delivering packets faster than both
BPA and ECMP, with an average improvement of
2.3–3% over BPA and 1.0–1.6% over ECMP.
It is at high traffic levels, 900–1200 mess/s,

where OMP provides the most significant gains.
While all three protocol variants are losing some
information, OMP is doing by far the best job.
With BPA and ECMP, the network infrastructure
is unable to handle the load, and a relatively large
percentage of packets are discarded––0.02% up to
almost 1.2%. OMP loses between 0.001% and
0.14%. At a traffic rate of 1100 mess/s, this means
that BPA and ECMP will drop about 16,000
packets during the 1 h of simulated behavior––a
huge number. Under the same conditions, OMP

would lose less than 1400. In addition to delivering
more traffic, OMP is still delivering packets more
quickly. At this load level there is a reduction in
delivery time of about 7.5% over BPA and 3.2%
over ECMP. (However, these numbers are highly
variable because of the huge packet loss rate which
effects the computation of the overall average de-
livery time.)
If we define a 0.1% packet loss as the maximum

acceptable, then our simulation shows that both
BPA and ECMP can handle traffic volumes up to
about 1000 mess/s, while OMP can handle traffic
loads up to 1200 mess/s. Put another way, with
exactly the same set of hardware resources (links,
processors, and memory) OMP can successfully
handle a 20% increase in traffic intensity, a sig-
nificant gain.
The one apparent anomaly in OMP perfor-

mance is the average delivery time at traffic levels
beyond 1300 mess/s––what we have termed a sat-
urated network. A graph of average delivery time

Table 1

Simulation results for Experiment #1

Mess/s Average delivery time (ms) Percent of packets loss

BPA ECMP OMP BPA ECMP OMP

Light

100 10.32 10.28 9.39 0 0 0

200 10.92 10.89 10.33 0 0 0

300 11.49 11.5 11.1 0 0 0

400 12.24 12.16 11.88 0 0 0

500 12.98 12.92 12.72 0 0 0

Medium

600 13.85 13.75 13.53 0.001 0 0

700 14.94 14.76 14.57 0.0036 0.0021 0

800 16.27 15.94 15.78 0.00548 0.0049 0

High

900 17.82 17.43 17.08 0.0202 0.0251 0.001

1000 20.92 19.57 18.76 0.128 0.0949 0.0117

1100 23.02 22.03 21.19 0.397 0.428 0.0352

1200 26.64 25.31 24.56 1.16 1.19 0.139

Saturated

1300 30.64 28.83 29.85 2.52 2.54 0.384

1400 35 32.81 49.94 4.65 4.51 1.43

1500 39.5 36.78 64.91 7.28 6.52 3.84

1600 43.99 41.04 75.27 9.89 8.95 6.15

1700 48.63 45.28 82.8 12.9 11.5 8.6

1800 53.24 49.39 94.71 15.7 14.3 12.6

1900 57.07 53.65 100.1 18.5 17.2 15.9

2000 60.57 57.75 105.1 21.3 20.2 18
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is shown in Fig. 6. Notice how the OMP values
jump at 1300 and stay far above the other two lines
for the remainder of the graph. The reason has to
do with packet loss. At this level, both BPA and
ECMP are losing enormous numbers of packets,
as much as 21%. OMP is also losing packets, al-
though at a significantly lower rate. Average de-
livery time measures the time of only those
messages successfully delivered to their destina-
tion. At these saturated levels, so many messages
are lost, that it is significantly affecting the com-
putation. Messages that are lost by BPA and
ECMP are being delivered by OMP, although it
takes a long while, which increases average deliv-
ery time. In a sense, OMP is being ‘‘penalized’’ for
doing a better job of delivering traffic during pe-
riod of enormous load!
In summary, Experiment 1 demonstrated that:

• OMP performed better than both BPA and
ECMP at light, medium, and heavy network
loads. The improvements ranged from 2% to
7% over BPA to about 1–4% over ECMP.

• OMP did a significantly better job reducing the
lost-packet rate. In a medium loaded network
it did not lose any packets, while BPA and
ECMP had packet loss rates of 0.001–0.005%.
In a heavily loaded network it did lose packets,
but at a far lower rate than either BPA or
ECMP.

4.2. Experiment #2: response to changes in traffic
patterns

Our second experiment examined how OMP
would responds to changes in traffic distribution.
Due to their static nature, both BPA and ECMP

are incapable of adjusting their routing tables.
OMP, on the other hand, can dynamically adjust
traffic allocations based on changing conditions.
Using the same 13-node network in Fig. 5 we

set the overall network load to 1000 mess/s (a high
traffic rate according to Table 1) and ran the sim-
ulation for 60 s. In Experiment 1 all nodes sent an
equal number of packets to all other sites. How-
ever, this type of totally uniform distribution is
unrealistic, so at time 60 we changed the distri-
bution. Now, only 5 of the 13-nodes generate new
traffic, and packets are sent only to the other 8
nodes. This arrangement behaves somewhat like a
client/server model––the five generators are similar
to clients generating requests, while the eight
receiving nodes are behaving like servers who must
support a huge volume of incoming traffic.
We ran the simulation for another 900 s, and

the results are shown in Fig. 7. The behaviors of
both BPA and ECMP were quite similar, so we
show only a single line for both.
Before the traffic change, OMP had an average

delivery time of about 18–19 ms, while BPA and
ECMP were delivering messages in about 21 ms.
After the change in traffic pattern, delivery times
rose for all three methods, reaching about 26 ms
after 5 min. For ECMP and BPA, which are both
static methods, delivery times remained at this
level for the remainder of the simulation, an in-
crease of about 19%.
OMP’s behavior, however, was quite different.

As with the static methods, delivery times increase
immediately after the traffic change since the

Fig. 7. Responsiveness to changes in traffic patterns.

Fig. 6. Average delivery times for Experiment 1.
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protocol is using allocation parameters that are no
longer appropriate for the new traffic distribution.
The delivery times reach a maximum value of
about 25 ms after 5 min of simulation. However,
by this point in time nodes are beginning to note
that some links are overloaded, and they start
flooding LSA_OMP_LINK_LOAD messages
which describe these new loads.
Upon receipt of these control messages nodes

begin adjusting their hashing boundaries to redis-
tribute the traffic, exactly as described in Section 2.
It takes a while, since the early traffic adjustments
are small, but eventually the network does adapt.
After 8 min of simulation, and only 3 min after it
reached its maximum value, OMP has reduced
average delivery time to 21 ms. Delivery times re-
main stable at this level for the remainder of the
simulation, without either instabilities or oscilla-
tions.
This is a clear demonstration of the ability of

OMP to respond quickly and effectively to changes
in the pattern of network traffic.

4.3. Experiment #3: behavior under unsteady state

In addition to changes in traffic distribution,
another common characteristic of network traffic is
massive, short-duration fluctuations in volume––
i.e., an unsteady state. In order to study how the
three variations of OSPF react to these capacity
fluctuations we conducted an experiment where we
suddenly doubled the traffic volume for a short
period of time, namely 3 s, and then watched what
happened with each of our three protocols. This
behavior might simulate, for example, the trans-
mission of a massive data file across the network.
For this experiment we measured the total number
of messages in the network, rather than delivery
time. With high intensity bursts of traffic, you are
usually more interested in how much traffic the
network can carry than in the time it takes to de-
liver that traffic.
Using the network from Fig. 5, we started with

the same simulation parameters as Experiment
1––a traffic intensity of 1000 mess/s and an equal
distribution of packets to all other nodes. We ran

the simulation until the network was stable and
unchanging. Then we suddenly increased the
traffic load from 1000 to 2000 mess/s for a period
of 3 s. The results are shown in Fig. 8, which
displays the total number of messages within the
network against time relative to the instant when
traffic intensity changed.
At time 0 traffic was doubled to 2000 mess/s,

well beyond the capacity of the network as shown
in Table 1. With both BPA and ECMP, the aver-
age number of messages in the network jumped
from 100 to 400 in about one second and then
stabilized.
The processor and transmission queues along

the routes filled up quickly, and at that point the
system was unable to handle any more incoming
packets, and they were lost. It is possible that there
was queue space available at other nodes, but
neither BPA nor ECMP could adapt and make use
of that free space. In a sense, Fig. 8 is saying that
the ‘‘network capacity’’ of both BPA and ECMP is
approximately 400 messages, and beyond that, all
message traffic will be lost.
OMP, on the other hand, utilized the available

memory resources much better. The number of
messages in the system grew to about 700 messages
in 2–3 s, an increase of 75% over what could be
handled by the other two methods. That is, OMP
was better able to accommodate these higher
traffic levels due to a superior distribution of load
across equal-cost paths, which made better use of
the total amount of memory space available
throughout the network.

Fig. 8. Performance under traffic shock.
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At time 3, traffic intensity was reset to 1000
mess/s. BPA and ECMP returned to their original
levels in about half a second. It took OMP longer,
about 1–1.5 s, since it has more messages in the
system that needed to be delivered.

4.4. Comparison with previous simulation work

The IETF has run simulations on the OMP
routing protocol, and a summary of their results
can be found in [11]. Their experiments differ from
the ones described in this paper in that they were
investigating the fundamental traffic allocation,
stability, and convergence properties of the OMP
algorithm described in Section 2. They examined
how OSPF-ECMP and OSPF-OMP allocated load
to equal-cost paths under different operating con-
ditions, and compared that to the loading prop-
erties of basic OSPF. For example, in their initial
experiment they used a 12-node, 19-link network
(quite similar to Fig. 5) and a fixed traffic volume
to study the link loading behavior of both ECMP
and OMP. With ECMP they found that two of the
network links were allocated 109% of capacity, an
obviously unstable system. Running OSPF-OMP,
they were able to reduce the load on the most
heavily used link to 89%. Further experiments are
described in [11].
Based on these simulation studies, the conclu-

sions reached by the IETF regarding the relative
performance of OMP vs. ECMP were:

• ECMP in some cases provides improvement
over OSPF without equal-cost paths and in
some cases makes loading worse. Having ECMP
available as an option is clearly preferable to not
having it available.

• OMP in all cases provided a loading improve-
ment over OSPF without equal-cost paths
and in all cases provided a loading improve-
ment over ECMP. Simple topologies can be
constructed where OMP performs no better
than either of these two techniques, but OMP
would never perform worse. In all real cases,
OMP would provide better loading and in some
cases very significantly better loading than

OSPF without equal cost or with ECMP
[11].

5. Conclusions

Our experiments with the network simulator
have allowed us to get some preliminary estimates
of the improvements in message delivery times and
packet loss rates that are possible using the OSPF-
OMP routing protocol in place of existing im-
plementations of OSPF. Of course, the results
presented in this paper apply only to the specific
conditions that existed within our experiments,
and these results cannot be generalized to state-
ments about the overall performance that can be
expected from OMP under all types of operating
conditions.
However, based on the outcomes of the three

experiments described in the previous section we
observed that OMP performed better than either
‘‘pure’’ OSPF or OSPF-ECMP under a wide range
of different traffic conditions. Specifically:

• OMP performed better than both BPA and
ECMP at light, medium, and heavy network
loads. The improvements in message delivery
times ranged from 2% to 7% over BPA to about
1–4% over ECMP.

• OMP did a significantly better job in reducing
the lost-packet rate. In a medium loaded net-
work it did not lose any packets, while BPA
and ECMP had packet loss rates of 0.001–
0.005%. In a heavily loaded network it did lose
packets, but at a far lower rate than either
BPA or ECMP.

• OMP responded well to dramatic changes in
traffic distribution. The response occurred in a
short period of time and did not appear to suffer
from oscillations.

• OMP responded well to dramatic fluctuations in
traffic volume. It responded by making better use
of the total amount memory available in the net-
work to lose significantly fewer packets.

In the future we plan to use our discrete event
simulator to study other aspects of OSPF-OMP
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and to examine how it behaves with different net-
works, a different set of lines, and different traffic
characteristics.
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